atsame54-xpro
Constants
const (
LED = PC18
BUTTON = PB31
)
const (
// Extension Header EXT1
EXT1_PIN3_ADC_P = PB04
EXT1_PIN4_ADC_N = PB05
EXT1_PIN5_GPIO1 = PA06
EXT1_PIN6_GPIO2 = PA07
EXT1_PIN7_PWM_P = PB08
EXT1_PIN8_PWM_N = PB09
EXT1_PIN9_IRQ = PB07
EXT1_PIN9_GPIO = PB07
EXT1_PIN10_SPI_SS_B = PA27
EXT1_PIN10_GPIO = PA27
EXT1_PIN11_TWI_SDA = PA22
EXT1_PIN12_TWI_SCL = PA23
EXT1_PIN13_UART_RX = PA05
EXT1_PIN14_UART_TX = PA04
EXT1_PIN15_SPI_SS_A = PB28
EXT1_PIN16_SPI_SDO = PB27
EXT1_PIN17_SPI_SDI = PB29
EXT1_PIN18_SPI_SCK = PB26
// Extension Header EXT2
EXT2_PIN3_ADC_P = PB00
EXT2_PIN4_ADC_N = PA03
EXT2_PIN5_GPIO1 = PB01
EXT2_PIN6_GPIO2 = PB06
EXT2_PIN7_PWM_P = PB14
EXT2_PIN8_PWM_N = PB15
EXT2_PIN9_IRQ = PD00
EXT2_PIN9_GPIO = PD00
EXT2_PIN10_SPI_SS_B = PB02
EXT2_PIN10_GPIO = PB02
EXT2_PIN11_TWI_SDA = PD08
EXT2_PIN12_TWI_SCL = PD09
EXT2_PIN13_UART_RX = PB17
EXT2_PIN14_UART_TX = PB16
EXT2_PIN15_SPI_SS_A = PC06
EXT2_PIN16_SPI_SDO = PC04
EXT2_PIN17_SPI_SDI = PC07
EXT2_PIN18_SPI_SCK = PC05
// Extension Header EXT3
EXT3_PIN3_ADC_P = PC02
EXT3_PIN4_ADC_N = PC03
EXT3_PIN5_GPIO1 = PC01
EXT3_PIN6_GPIO2 = PC10
EXT3_PIN7_PWM_P = PD10
EXT3_PIN8_PWM_N = PD11
EXT3_PIN9_IRQ = PC30
EXT3_PIN9_GPIO = PC30
EXT3_PIN10_SPI_SS_B = PC31
EXT3_PIN10_GPIO = PC31
EXT3_PIN11_TWI_SDA = PD08
EXT3_PIN12_TWI_SCL = PD09
EXT3_PIN13_UART_RX = PC23
EXT3_PIN14_UART_TX = PC22
EXT3_PIN15_SPI_SS_A = PC14
EXT3_PIN16_SPI_SDO = PC04
EXT3_PIN17_SPI_SDI = PC07
EXT3_PIN18_SPI_SCK = PC05
// SD_CARD
SD_CARD_MCDA0 = PB18
SD_CARD_MCDA1 = PB19
SD_CARD_MCDA2 = PB20
SD_CARD_MCDA3 = PB21
SD_CARD_MCCK = PA21
SD_CARD_MCCDA = PA20
SD_CARD_DETECT = PD20
SD_CARD_PROTECT = PD21
// I2C
I2C_SDA = PD08
I2C_SCL = PD09
// CAN
CAN0_TX = PA22
CAN0_RX = PA23
CAN1_STANDBY = PC13
CAN1_TX = PB12
CAN1_RX = PB13
CAN_STANDBY = CAN1_STANDBY
CAN_TX = CAN1_TX
CAN_RX = CAN1_RX
// PDEC
PDEC_PHASE_A = PC16
PDEC_PHASE_B = PC17
PDEC_INDEX = PC18
// PCC
PCC_I2C_SDA = PD08
PCC_I2C_SCL = PD09
PCC_VSYNC_DEN1 = PA12
PCC_HSYNC_DEN2 = PA13
PCC_CLK = PA14
PCC_XCLK = PA15
PCC_DATA00 = PA16
PCC_DATA01 = PA17
PCC_DATA02 = PA18
PCC_DATA03 = PA19
PCC_DATA04 = PA20
PCC_DATA05 = PA21
PCC_DATA06 = PA22
PCC_DATA07 = PA23
PCC_DATA08 = PB14
PCC_DATA09 = PB15
PCC_RESET = PC12
PCC_PWDN = PC11
// Ethernet
ETHERNET_TXCK = PA14
ETHERNET_TXEN = PA17
ETHERNET_TX0 = PA18
ETHERNET_TX1 = PA19
ETHERNET_RXER = PA15
ETHERNET_RX0 = PA13
ETHERNET_RX1 = PA12
ETHERNET_RXDV = PC20
ETHERNET_MDIO = PC12
ETHERNET_MDC = PC11
ETHERNET_INT = PD12
ETHERNET_RESET = PC21
PIN_QT_BUTTON = PA16
PIN_BTN0 = PB31
PIN_ETH_LED = PC15
PIN_LED0 = PC18
PIN_ADC_DAC = PA02
PIN_VBUS_DETECT = PC00
PIN_USB_ID = PC19
)
const (
USBCDC_DM_PIN = PA24
USBCDC_DP_PIN = PA25
)
USBCDC pins
const (
// Extension Header EXT1
UART_TX_PIN = PA04 // TX : SERCOM0/PAD[0]
UART_RX_PIN = PA05 // RX : SERCOM0/PAD[1]
// Extension Header EXT2
UART2_TX_PIN = PB16 // TX : SERCOM5/PAD[0]
UART2_RX_PIN = PB17 // RX : SERCOM5/PAD[1]
// Extension Header EXT3
UART3_TX_PIN = PC22 // TX : SERCOM1/PAD[0]
UART3_RX_PIN = PC23 // RX : SERCOM1/PAD[1]
// Virtual COM Port
UART4_TX_PIN = PB25 // TX : SERCOM2/PAD[0]
UART4_RX_PIN = PB24 // RX : SERCOM2/PAD[1]
)
UART pins
const (
// Extension Header EXT1
SDA0_PIN = PA22 // SDA: SERCOM3/PAD[0]
SCL0_PIN = PA23 // SCL: SERCOM3/PAD[1]
// Extension Header EXT2
SDA1_PIN = PD08 // SDA: SERCOM7/PAD[0]
SCL1_PIN = PD09 // SCL: SERCOM7/PAD[1]
// Extension Header EXT3
SDA2_PIN = PD08 // SDA: SERCOM7/PAD[0]
SCL2_PIN = PD09 // SCL: SERCOM7/PAD[1]
// Data Gateway Interface
SDA_DGI_PIN = PD08 // SDA: SERCOM7/PAD[0]
SCL_DGI_PIN = PD09 // SCL: SERCOM7/PAD[1]
SDA_PIN = SDA0_PIN
SCL_PIN = SCL0_PIN
)
I2C pins
const (
// Extension Header EXT1
SPI0_SCK_PIN = PB26 // SCK: SERCOM4/PAD[1]
SPI0_SDO_PIN = PB27 // SDO: SERCOM4/PAD[0]
SPI0_SDI_PIN = PB29 // SDI: SERCOM4/PAD[3]
SPI0_SS_PIN = PB28 // SS : SERCOM4/PAD[2]
// Extension Header EXT2
SPI1_SCK_PIN = PC05 // SCK: SERCOM6/PAD[1]
SPI1_SDO_PIN = PC04 // SDO: SERCOM6/PAD[0]
SPI1_SDI_PIN = PC07 // SDI: SERCOM6/PAD[3]
SPI1_SS_PIN = PC06 // SS : SERCOM6/PAD[2]
// Extension Header EXT3
SPI2_SCK_PIN = PC05 // SCK: SERCOM6/PAD[1]
SPI2_SDO_PIN = PC04 // SDO: SERCOM6/PAD[0]
SPI2_SDI_PIN = PC07 // SDI: SERCOM6/PAD[3]
SPI2_SS_PIN = PC14 // SS : GPIO
// Data Gateway Interface
SPI_DGI_SCK_PIN = PC05 // SCK: SERCOM6/PAD[1]
SPI_DGI_SDO_PIN = PC04 // SDO: SERCOM6/PAD[0]
SPI_DGI_SDI_PIN = PC07 // SDI: SERCOM6/PAD[3]
SPI_DGI_SS_PIN = PD01 // SS : GPIO
)
SPI pins
const (
TWI_FREQ_100KHZ = 100000
TWI_FREQ_400KHZ = 400000
)
TWI_FREQ is the I2C bus speed. Normally either 100 kHz, or 400 kHz for high-speed bus.
Deprecated: use 100 * machine.KHz or 400 * machine.KHz instead.
const (
// I2CReceive indicates target has received a message from the controller.
I2CReceive I2CTargetEvent = iota
// I2CRequest indicates the controller is expecting a message from the target.
I2CRequest
// I2CFinish indicates the controller has ended the transaction.
//
// I2C controllers can chain multiple receive/request messages without
// relinquishing the bus by doing 'restarts'. I2CFinish indicates the
// bus has been relinquished by an I2C 'stop'.
I2CFinish
)
const (
// I2CModeController represents an I2C peripheral in controller mode.
I2CModeController I2CMode = iota
// I2CModeTarget represents an I2C peripheral in target mode.
I2CModeTarget
)
const (
I2SModeSource I2SMode = iota
I2SModeReceiver
I2SModePDM
)
const (
I2StandardPhilips I2SStandard = iota
I2SStandardMSB
I2SStandardLSB
)
const (
I2SClockSourceInternal I2SClockSource = iota
I2SClockSourceExternal
)
const (
I2SDataFormatDefault I2SDataFormat = 0
I2SDataFormat8bit = 8
I2SDataFormat16bit = 16
I2SDataFormat24bit = 24
I2SDataFormat32bit = 32
)
const Device = deviceName
Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.
The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.
const (
KHz = 1000
MHz = 1000_000
GHz = 1000_000_000
)
Generic constants.
const NoPin = Pin(0xff)
NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).
const (
PinAnalog PinMode = 1
PinSERCOM PinMode = 2
PinSERCOMAlt PinMode = 3
PinTimer PinMode = 4
PinTimerAlt PinMode = 5
PinTCCPDEC PinMode = 6
PinCom PinMode = 7
PinSDHC PinMode = 8
PinI2S PinMode = 9
PinPCC PinMode = 10
PinGMAC PinMode = 11
PinACCLK PinMode = 12
PinCCL PinMode = 13
PinDigital PinMode = 14
PinInput PinMode = 15
PinInputPullup PinMode = 16
PinOutput PinMode = 17
PinTCCE PinMode = PinTimer
PinTCCF PinMode = PinTimerAlt
PinTCCG PinMode = PinTCCPDEC
PinInputPulldown PinMode = 18
PinCAN PinMode = 19
PinCAN0 PinMode = PinSDHC
PinCAN1 PinMode = PinCom
)
const (
PinRising PinChange = sam.EIC_CONFIG_SENSE0_RISE
PinFalling PinChange = sam.EIC_CONFIG_SENSE0_FALL
PinToggle PinChange = sam.EIC_CONFIG_SENSE0_BOTH
)
Pin change interrupt constants for SetInterrupt.
const (
PA00 Pin = 0
PA01 Pin = 1
PA02 Pin = 2
PA03 Pin = 3
PA04 Pin = 4
PA05 Pin = 5
PA06 Pin = 6
PA07 Pin = 7
PA08 Pin = 8 // peripherals: TCC0 channel 0, TCC1 channel 4
PA09 Pin = 9 // peripherals: TCC0 channel 1, TCC1 channel 5
PA10 Pin = 10 // peripherals: TCC0 channel 2, TCC1 channel 6
PA11 Pin = 11 // peripherals: TCC0 channel 3, TCC1 channel 7
PA12 Pin = 12 // peripherals: TCC0 channel 6, TCC1 channel 2
PA13 Pin = 13 // peripherals: TCC0 channel 7, TCC1 channel 3
PA14 Pin = 14 // peripherals: TCC2 channel 0, TCC1 channel 2
PA15 Pin = 15 // peripherals: TCC2 channel 1, TCC1 channel 3
PA16 Pin = 16 // peripherals: TCC1 channel 0, TCC0 channel 4
PA17 Pin = 17 // peripherals: TCC1 channel 1, TCC0 channel 5
PA18 Pin = 18 // peripherals: TCC1 channel 2, TCC0 channel 6
PA19 Pin = 19 // peripherals: TCC1 channel 3, TCC0 channel 7
PA20 Pin = 20 // peripherals: TCC1 channel 4, TCC0 channel 0
PA21 Pin = 21 // peripherals: TCC1 channel 5, TCC0 channel 1
PA22 Pin = 22 // peripherals: TCC1 channel 6, TCC0 channel 2
PA23 Pin = 23 // peripherals: TCC1 channel 7, TCC0 channel 3
PA24 Pin = 24 // peripherals: TCC2 channel 2
PA25 Pin = 25 // peripherals: TCC2 channel 3
PA26 Pin = 26
PA27 Pin = 27
PA28 Pin = 28
PA29 Pin = 29
PA30 Pin = 30 // peripherals: TCC2 channel 0
PA31 Pin = 31 // peripherals: TCC2 channel 1
PB00 Pin = 32
PB01 Pin = 33
PB02 Pin = 34 // peripherals: TCC2 channel 2
PB03 Pin = 35 // peripherals: TCC2 channel 3
PB04 Pin = 36
PB05 Pin = 37
PB06 Pin = 38
PB07 Pin = 39
PB08 Pin = 40
PB09 Pin = 41
PB10 Pin = 42 // peripherals: TCC0 channel 4, TCC1 channel 0
PB11 Pin = 43 // peripherals: TCC0 channel 5, TCC1 channel 1
PB12 Pin = 44 // peripherals: TCC3 channel 0, TCC0 channel 0
PB13 Pin = 45 // peripherals: TCC3 channel 1, TCC0 channel 1
PB14 Pin = 46 // peripherals: TCC4 channel 0, TCC0 channel 2
PB15 Pin = 47 // peripherals: TCC4 channel 1, TCC0 channel 3
PB16 Pin = 48 // peripherals: TCC3 channel 0, TCC0 channel 4
PB17 Pin = 49 // peripherals: TCC3 channel 1, TCC0 channel 5
PB18 Pin = 50 // peripherals: TCC1 channel 0
PB19 Pin = 51 // peripherals: TCC1 channel 1
PB20 Pin = 52 // peripherals: TCC1 channel 2
PB21 Pin = 53 // peripherals: TCC1 channel 3
PB22 Pin = 54
PB23 Pin = 55
PB24 Pin = 56
PB25 Pin = 57
PB26 Pin = 58 // peripherals: TCC1 channel 2
PB27 Pin = 59 // peripherals: TCC1 channel 3
PB28 Pin = 60 // peripherals: TCC1 channel 4
PB29 Pin = 61 // peripherals: TCC1 channel 5
PB30 Pin = 62 // peripherals: TCC4 channel 0, TCC0 channel 6
PB31 Pin = 63 // peripherals: TCC4 channel 1, TCC0 channel 7
PC00 Pin = 64
PC01 Pin = 65
PC02 Pin = 66
PC03 Pin = 67
PC04 Pin = 68 // peripherals: TCC0 channel 0
PC05 Pin = 69 // peripherals: TCC0 channel 1
PC06 Pin = 70
PC07 Pin = 71
PC08 Pin = 72
PC09 Pin = 73
PC10 Pin = 74 // peripherals: TCC0 channel 0, TCC1 channel 4
PC11 Pin = 75 // peripherals: TCC0 channel 1, TCC1 channel 5
PC12 Pin = 76 // peripherals: TCC0 channel 2, TCC1 channel 6
PC13 Pin = 77 // peripherals: TCC0 channel 3, TCC1 channel 7
PC14 Pin = 78 // peripherals: TCC0 channel 4, TCC1 channel 0
PC15 Pin = 79 // peripherals: TCC0 channel 5, TCC1 channel 1
PC16 Pin = 80 // peripherals: TCC0 channel 0
PC17 Pin = 81 // peripherals: TCC0 channel 1
PC18 Pin = 82 // peripherals: TCC0 channel 2
PC19 Pin = 83 // peripherals: TCC0 channel 3
PC20 Pin = 84 // peripherals: TCC0 channel 4
PC21 Pin = 85 // peripherals: TCC0 channel 5
PC22 Pin = 86 // peripherals: TCC0 channel 6
PC23 Pin = 87 // peripherals: TCC0 channel 7
PC24 Pin = 88
PC25 Pin = 89
PC26 Pin = 90
PC27 Pin = 91
PC28 Pin = 92
PC29 Pin = 93
PC30 Pin = 94
PC31 Pin = 95
PD00 Pin = 96
PD01 Pin = 97
PD02 Pin = 98
PD03 Pin = 99
PD04 Pin = 100
PD05 Pin = 101
PD06 Pin = 102
PD07 Pin = 103
PD08 Pin = 104 // peripherals: TCC0 channel 1
PD09 Pin = 105 // peripherals: TCC0 channel 2
PD10 Pin = 106 // peripherals: TCC0 channel 3
PD11 Pin = 107 // peripherals: TCC0 channel 4
PD12 Pin = 108 // peripherals: TCC0 channel 5
PD13 Pin = 109 // peripherals: TCC0 channel 6
PD14 Pin = 110
PD15 Pin = 111
PD16 Pin = 112
PD17 Pin = 113
PD18 Pin = 114
PD19 Pin = 115
PD20 Pin = 116 // peripherals: TCC1 channel 0
PD21 Pin = 117 // peripherals: TCC1 channel 1
PD22 Pin = 118
PD23 Pin = 119
PD24 Pin = 120
PD25 Pin = 121
PD26 Pin = 122
PD27 Pin = 123
PD28 Pin = 124
PD29 Pin = 125
PD30 Pin = 126
PD31 Pin = 127
)
Hardware pins
const (
// SERCOM_FREQ_REF is always reference frequency on SAMD51 regardless of CPU speed.
SERCOM_FREQ_REF = 48000000
SERCOM_FREQ_REF_GCLK0 = 120000000
// Default rise time in nanoseconds, based on 4.7K ohm pull up resistors
riseTimeNanoseconds = 125
// wire bus states
wireUnknownState = 0
wireIdleState = 1
wireOwnerState = 2
wireBusyState = 3
// wire commands
wireCmdNoAction = 0
wireCmdRepeatStart = 1
wireCmdRead = 2
wireCmdStop = 3
)
const (
QSPI_SCK = PB10
QSPI_CS = PB11
QSPI_DATA0 = PA08
QSPI_DATA1 = PA09
QSPI_DATA2 = PA10
QSPI_DATA3 = PA11
)
The QSPI peripheral on ATSAMD51 is only available on the following pins
const (
// WatchdogMaxTimeout in milliseconds (16s)
WatchdogMaxTimeout = (16384 * 1000) / 1024 // CYC16384/1024kHz
)
const HSRAM_SIZE = 0x00040000
const (
CANRxFifoSize = 16
CANTxFifoSize = 16
CANEvFifoSize = 16
)
const (
CANTransferRate125kbps CANTransferRate = 125000
CANTransferRate250kbps CANTransferRate = 250000
CANTransferRate500kbps CANTransferRate = 500000
CANTransferRate1000kbps CANTransferRate = 1000000
CANTransferRate2000kbps CANTransferRate = 2000000
CANTransferRate4000kbps CANTransferRate = 4000000
)
CAN transfer rates for CANConfig
const (
Mode0 = 0
Mode1 = 1
Mode2 = 2
Mode3 = 3
)
SPI phase and polarity configs CPOL and CPHA
const (
// ParityNone means to not use any parity checking. This is
// the most common setting.
ParityNone UARTParity = iota
// ParityEven means to expect that the total number of 1 bits sent
// should be an even number.
ParityEven
// ParityOdd means to expect that the total number of 1 bits sent
// should be an odd number.
ParityOdd
)
Variables
var (
// Extension Header EXT1
UART1 = &sercomUSART0
// Extension Header EXT2
UART2 = &sercomUSART5
// Extension Header EXT3
UART3 = &sercomUSART1
// EDBG Virtual COM Port
UART4 = &sercomUSART2
)
UART on the SAM E54 Xplained Pro
var (
// Extension Header EXT1
I2C0 = sercomI2CM3
// Extension Header EXT2
I2C1 = sercomI2CM7
// Extension Header EXT3
I2C2 = sercomI2CM7
// Data Gateway Interface
I2C3 = sercomI2CM7
)
I2C on the SAM E54 Xplained Pro
var (
// Extension Header EXT1
SPI0 = sercomSPIM4
// Extension Header EXT2
SPI1 = sercomSPIM6
// Extension Header EXT3
SPI2 = sercomSPIM6
// Data Gateway Interface
SPI3 = sercomSPIM6
)
SPI on the SAM E54 Xplained Pro
var (
CAN0 = CAN{
Bus: sam.CAN0,
}
CAN1 = CAN{
Bus: sam.CAN1,
}
)
CAN on the SAM E54 Xplained Pro
var (
ErrTimeoutRNG = errors.New("machine: RNG Timeout")
ErrClockRNG = errors.New("machine: RNG Clock Error")
ErrSeedRNG = errors.New("machine: RNG Seed Error")
ErrInvalidInputPin = errors.New("machine: invalid input pin")
ErrInvalidOutputPin = errors.New("machine: invalid output pin")
ErrInvalidClockPin = errors.New("machine: invalid clock pin")
ErrInvalidDataPin = errors.New("machine: invalid data pin")
ErrNoPinChangeChannel = errors.New("machine: no channel available for pin interrupt")
)
var (
DAC0 = DAC{Channel: 0}
DAC1 = DAC{Channel: 1}
)
var Flash flashBlockDevice
var Watchdog = &watchdogImpl{}
Watchdog provides access to the hardware watchdog available in the SAMD51.
var (
TCC0 = (*TCC)(sam.TCC0)
TCC1 = (*TCC)(sam.TCC1)
TCC2 = (*TCC)(sam.TCC2)
TCC3 = (*TCC)(sam.TCC3)
TCC4 = (*TCC)(sam.TCC4)
)
This chip has five TCC peripherals, which have PWM as one feature.
var CANRxFifo [2][(8 + 64) * CANRxFifoSize]byte
var CANTxFifo [2][(8 + 64) * CANTxFifoSize]byte
var CANEvFifo [2][(8) * CANEvFifoSize]byte
var (
ErrPWMPeriodTooLong = errors.New("pwm: period too long")
)
var Serial Serialer
Serial is implemented via USB (USB-CDC).
var (
ErrTxInvalidSliceSize = errors.New("SPI write and read slices must be same size")
errSPIInvalidMachineConfig = errors.New("SPI port was not configured properly by the machine")
)
var (
USBDev = &USBDevice{}
USBCDC Serialer
)
var (
ErrUSBReadTimeout = errors.New("USB read timeout")
ErrUSBBytesRead = errors.New("USB invalid number of bytes read")
ErrUSBBytesWritten = errors.New("USB invalid number of bytes written")
)
func CANDlcToLength
func CANDlcToLength(dlc byte, isFD bool) byte
CANDlcToLength() converts a DLC value to its actual length.
func CANLengthToDlc
func CANLengthToDlc(length byte, isFD bool) byte
CANLengthToDlc() converts its actual length to a DLC value.
func CPUFrequency
func CPUFrequency() uint32
func CPUReset
func CPUReset()
CPUReset performs a hard system reset.
func ConfigureUSBEndpoint
func ConfigureUSBEndpoint(desc descriptor.Descriptor, epSettings []usb.EndpointConfig, setup []usb.SetupConfig)
func DeviceID
func DeviceID() []byte
DeviceID returns an identifier that is unique within a particular chipset.
The identity is one burnt into the MCU itself, or the flash chip at time of manufacture.
It’s possible that two different vendors may allocate the same DeviceID, so callers should take this into account if needing to generate a globally unique id.
The length of the hardware ID is vendor-specific, but 8 bytes (64 bits) and 16 bytes (128 bits) are common.
func EnableCDC
func EnableCDC(txHandler func(), rxHandler func([]byte), setupHandler func(usb.Setup) bool)
func EnterBootloader
func EnterBootloader()
EnterBootloader should perform a system reset in preparation to switch to the bootloader to flash new firmware.
func FlashDataEnd
func FlashDataEnd() uintptr
Return the end of the writable flash area. Usually this is the address one past the end of the on-chip flash.
func FlashDataStart
func FlashDataStart() uintptr
Return the start of the writable flash area, aligned on a page boundary. This is usually just after the program and static data.
func GetRNG
func GetRNG() (uint32, error)
GetRNG returns 32 bits of cryptographically secure random data
func InitADC
func InitADC()
InitADC initializes the ADC.
func InitSerial
func InitSerial()
func NewRingBuffer
func NewRingBuffer() *RingBuffer
NewRingBuffer returns a new ring buffer.
func ReceiveUSBControlPacket
func ReceiveUSBControlPacket() ([cdcLineInfoSize]byte, error)
func SendUSBInPacket
func SendUSBInPacket(ep uint32, data []byte) bool
SendUSBInPacket sends a packet for USB (interrupt in / bulk in).
func SendZlp
func SendZlp()
type ADC
type ADC struct {
Pin Pin
}
func (ADC) Configure
func (a ADC) Configure(config ADCConfig)
Configure configures a ADCPin to be able to be used to read data.
func (ADC) Get
func (a ADC) Get() uint16
Get returns the current value of a ADC pin, in the range 0..0xffff.
type ADCConfig
type ADCConfig struct {
Reference uint32 // analog reference voltage (AREF) in millivolts
Resolution uint32 // number of bits for a single conversion (e.g., 8, 10, 12)
Samples uint32 // number of samples for a single conversion (e.g., 4, 8, 16, 32)
SampleTime uint32 // sample time, in microseconds (µs)
}
ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.
type BlockDevice
type BlockDevice interface {
// ReadAt reads the given number of bytes from the block device.
io.ReaderAt
// WriteAt writes the given number of bytes to the block device.
io.WriterAt
// Size returns the number of bytes in this block device.
Size() int64
// WriteBlockSize returns the block size in which data can be written to
// memory. It can be used by a client to optimize writes, non-aligned writes
// should always work correctly.
WriteBlockSize() int64
// EraseBlockSize returns the smallest erasable area on this particular chip
// in bytes. This is used for the block size in EraseBlocks.
// It must be a power of two, and may be as small as 1. A typical size is 4096.
EraseBlockSize() int64
// EraseBlocks erases the given number of blocks. An implementation may
// transparently coalesce ranges of blocks into larger bundles if the chip
// supports this. The start and len parameters are in block numbers, use
// EraseBlockSize to map addresses to blocks.
EraseBlocks(start, len int64) error
}
BlockDevice is the raw device that is meant to store flash data.
type CAN
type CAN struct {
Bus *sam.CAN_Type
}
func (*CAN) Configure
func (can *CAN) Configure(config CANConfig) error
Configure this CAN peripheral with the given configuration.
func (*CAN) Rx
func (can *CAN) Rx() (id uint32, dlc byte, data []byte, isFd, isExtendedID bool)
Rx receives a CAN frame. It is easier to use than RxRaw, but not as flexible.
func (*CAN) RxFifoIsEmpty
func (can *CAN) RxFifoIsEmpty() bool
RxFifoIsEmpty returns whether RxFifo is empty or not.
func (*CAN) RxFifoIsFull
func (can *CAN) RxFifoIsFull() bool
RxFifoIsFull returns whether RxFifo is full or not.
func (*CAN) RxFifoSize
func (can *CAN) RxFifoSize() int
RxFifoSize returns the number of CAN Frames currently stored in the RXFifo.
func (*CAN) RxRaw
func (can *CAN) RxRaw(e *CANRxBufferElement)
RxRaw copies the received CAN frame to CANRxBufferElement.
func (*CAN) SetInterrupt
func (can *CAN) SetInterrupt(ie uint32, callback func(*CAN)) error
SetInterrupt sets an interrupt to be executed when a particular CAN state.
This call will replace a previously set callback. You can pass a nil func to unset the CAN interrupt. If you do so, the change parameter is ignored and can be set to any value (such as 0).
func (*CAN) Tx
func (can *CAN) Tx(id uint32, data []byte, isFD, isExtendedID bool)
The Tx transmits CAN frames. It is easier to use than TxRaw, but not as flexible.
func (*CAN) TxFifoFreeLevel
func (can *CAN) TxFifoFreeLevel() int
TxFifoFreeLevel returns how many messages can still be set in the TxFifo.
func (*CAN) TxFifoIsFull
func (can *CAN) TxFifoIsFull() bool
TxFifoIsFull returns whether TxFifo is full or not.
func (*CAN) TxRaw
func (can *CAN) TxRaw(e *CANTxBufferElement)
TxRaw sends a CAN Frame according to CANTxBufferElement.
type CANConfig
type CANConfig struct {
TransferRate CANTransferRate
TransferRateFD CANTransferRate
Tx Pin
Rx Pin
Standby Pin
}
CANConfig holds CAN configuration parameters. Tx and Rx need to be specified with some pins. When the Standby Pin is specified, configure it as an output pin and output Low in Configure(). If this operation is not necessary, specify NoPin.
type CANRxBufferElement
type CANRxBufferElement struct {
ESI bool
XTD bool
RTR bool
ID uint32
ANMF bool
FIDX uint8
FDF bool
BRS bool
DLC uint8
RXTS uint16
DB [64]uint8
}
CANRxBufferElement is a struct that corresponds to the same5x Rx Buffer and FIFO Element.
func (CANRxBufferElement) Data
func (e CANRxBufferElement) Data() []byte
Data returns the received data as a slice of the size according to dlc.
func (CANRxBufferElement) Length
func (e CANRxBufferElement) Length() byte
Length returns its actual length.
type CANTransferRate
type CANTransferRate uint32
type CANTxBufferElement
type CANTxBufferElement struct {
ESI bool
XTD bool
RTR bool
ID uint32
MM uint8
EFC bool
FDF bool
BRS bool
DLC uint8
DB [64]uint8
}
CANTxBufferElement is a struct that corresponds to the same5x’ Tx Buffer Element.
type DAC
type DAC struct {
Channel uint8
}
DAC on the SAMD51.
func (DAC) Configure
func (dac DAC) Configure(config DACConfig)
Configure the DAC. output pin must already be configured.
func (DAC) Set
func (dac DAC) Set(value uint16) error
Set writes a single 16-bit value to the DAC. Since the ATSAMD51 only has a 12-bit DAC, the passed-in value will be scaled down.
type DACConfig
type DACConfig struct {
}
DACConfig placeholder for future expansion.
type I2C
type I2C struct {
Bus *sam.SERCOM_I2CM_Type
SERCOM uint8
}
I2C on the SAMD51.
func (*I2C) Configure
func (i2c *I2C) Configure(config I2CConfig) error
Configure is intended to setup the I2C interface.
func (*I2C) ReadRegister
func (i2c *I2C) ReadRegister(address uint8, register uint8, data []byte) error
ReadRegister transmits the register, restarts the connection as a read operation, and reads the response.
Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily read such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.
func (*I2C) SetBaudRate
func (i2c *I2C) SetBaudRate(br uint32) error
SetBaudRate sets the communication speed for I2C.
func (*I2C) Tx
func (i2c *I2C) Tx(addr uint16, w, r []byte) error
Tx does a single I2C transaction at the specified address. It clocks out the given address, writes the bytes in w, reads back len(r) bytes and stores them in r, and generates a stop condition on the bus.
func (*I2C) WriteByte
func (i2c *I2C) WriteByte(data byte) error
WriteByte writes a single byte to the I2C bus.
func (*I2C) WriteRegister
func (i2c *I2C) WriteRegister(address uint8, register uint8, data []byte) error
WriteRegister transmits first the register and then the data to the peripheral device.
Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily write to such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.
type I2CConfig
type I2CConfig struct {
Frequency uint32
SCL Pin
SDA Pin
}
I2CConfig is used to store config info for I2C.
type I2CMode
type I2CMode int
I2CMode determines if an I2C peripheral is in Controller or Target mode.
type I2CTargetEvent
type I2CTargetEvent uint8
I2CTargetEvent reflects events on the I2C bus
type I2SClockSource
type I2SClockSource uint8
type I2SConfig
type I2SConfig struct {
SCK Pin
WS Pin
SD Pin
Mode I2SMode
Standard I2SStandard
ClockSource I2SClockSource
DataFormat I2SDataFormat
AudioFrequency uint32
MainClockOutput bool
Stereo bool
}
All fields are optional and may not be required or used on a particular platform.
type I2SDataFormat
type I2SDataFormat uint8
type I2SMode
type I2SMode uint8
type I2SStandard
type I2SStandard uint8
type NullSerial
type NullSerial struct {
}
NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.
func (NullSerial) Buffered
func (ns NullSerial) Buffered() int
Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.
func (NullSerial) Configure
func (ns NullSerial) Configure(config UARTConfig) error
Configure does nothing: the null serial has no configuration.
func (NullSerial) ReadByte
func (ns NullSerial) ReadByte() (byte, error)
ReadByte always returns an error because there aren’t any bytes to read.
func (NullSerial) Write
func (ns NullSerial) Write(p []byte) (n int, err error)
Write is a no-op: none of the data is being written and it will not return an error.
func (NullSerial) WriteByte
func (ns NullSerial) WriteByte(b byte) error
WriteByte is a no-op: the null serial doesn’t write bytes.
type PDMConfig
type PDMConfig struct {
Stereo bool
DIN Pin
CLK Pin
}
type PWMConfig
type PWMConfig struct {
// PWM period in nanosecond. Leaving this zero will pick a reasonable period
// value for use with LEDs.
// If you want to configure a frequency instead of a period, you can use the
// following formula to calculate a period from a frequency:
//
// period = 1e9 / frequency
//
Period uint64
}
PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.
type Pin
type Pin uint8
Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.
func (Pin) Configure
func (p Pin) Configure(config PinConfig)
Configure this pin with the given configuration.
func (Pin) Get
func (p Pin) Get() bool
Get returns the current value of a GPIO pin when configured as an input or as an output.
func (Pin) High
func (p Pin) High()
High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.
func (Pin) Low
func (p Pin) Low()
Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.
func (Pin) PortMaskClear
func (p Pin) PortMaskClear() (*uint32, uint32)
Return the register and mask to disable a given port. This can be used to implement bit-banged drivers.
func (Pin) PortMaskSet
func (p Pin) PortMaskSet() (*uint32, uint32)
Return the register and mask to enable a given GPIO pin. This can be used to implement bit-banged drivers.
func (Pin) Set
func (p Pin) Set(high bool)
Set the pin to high or low. Warning: only use this on an output pin!
func (Pin) SetInterrupt
func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error
SetInterrupt sets an interrupt to be executed when a particular pin changes state. The pin should already be configured as an input, including a pull up or down if no external pull is provided.
This call will replace a previously set callback on this pin. You can pass a nil func to unset the pin change interrupt. If you do so, the change parameter is ignored and can be set to any value (such as 0).
func (Pin) Toggle
func (p Pin) Toggle()
Toggle switches an output pin from low to high or from high to low. Warning: only use this on an output pin!
type PinChange
type PinChange uint8
type PinConfig
type PinConfig struct {
Mode PinMode
}
type PinMode
type PinMode uint8
PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.
type RingBuffer
type RingBuffer struct {
rxbuffer [bufferSize]volatile.Register8
head volatile.Register8
tail volatile.Register8
}
RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php
func (*RingBuffer) Clear
func (rb *RingBuffer) Clear()
Clear resets the head and tail pointer to zero.
func (*RingBuffer) Get
func (rb *RingBuffer) Get() (byte, bool)
Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.
func (*RingBuffer) Put
func (rb *RingBuffer) Put(val byte) bool
Put stores a byte in the buffer. If the buffer is already full, the method will return false.
func (*RingBuffer) Used
func (rb *RingBuffer) Used() uint8
Used returns how many bytes in buffer have been used.
type SPI
type SPI struct {
Bus *sam.SERCOM_SPIM_Type
SERCOM uint8
}
SPI
func (SPI) Configure
func (spi SPI) Configure(config SPIConfig) error
Configure is intended to setup the SPI interface.
func (SPI) Transfer
func (spi SPI) Transfer(w byte) (byte, error)
Transfer writes/reads a single byte using the SPI interface.
func (SPI) Tx
func (spi SPI) Tx(w, r []byte) error
Tx handles read/write operation for SPI interface. Since SPI is a synchronous write/read interface, there must always be the same number of bytes written as bytes read. The Tx method knows about this, and offers a few different ways of calling it.
This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer. Note that the tx and rx buffers must be the same size:
spi.Tx(tx, rx)
This form sends the tx buffer, ignoring the result. Useful for sending “commands” that return zeros until all the bytes in the command packet have been received:
spi.Tx(tx, nil)
This form sends zeros, putting the result into the rx buffer. Good for reading a “result packet”:
spi.Tx(nil, rx)
type SPIConfig
type SPIConfig struct {
Frequency uint32
SCK Pin
SDO Pin
SDI Pin
LSBFirst bool
Mode uint8
}
SPIConfig is used to store config info for SPI.
type Serialer
type Serialer interface {
WriteByte(c byte) error
Write(data []byte) (n int, err error)
Configure(config UARTConfig) error
Buffered() int
ReadByte() (byte, error)
DTR() bool
RTS() bool
}
type TCC
type TCC sam.TCC_Type
TCC is one timer peripheral, which consists of a counter and multiple output channels (that can be connected to actual pins). You can set the frequency using SetPeriod, but only for all the channels in this timer peripheral at once.
func (*TCC) Channel
func (tcc *TCC) Channel(pin Pin) (uint8, error)
Channel returns a PWM channel for the given pin. Note that one channel may be shared between multiple pins, and so will have the same duty cycle. If this is not desirable, look for a different TCC or consider using a different pin.
func (*TCC) Configure
func (tcc *TCC) Configure(config PWMConfig) error
Configure enables and configures this TCC.
func (*TCC) Counter
func (tcc *TCC) Counter() uint32
Counter returns the current counter value of the timer in this TCC peripheral. It may be useful for debugging.
func (*TCC) Set
func (tcc *TCC) Set(channel uint8, value uint32)
Set updates the channel value. This is used to control the channel duty cycle, in other words the fraction of time the channel output is high (or low when inverted). For example, to set it to a 25% duty cycle, use:
tcc.Set(channel, tcc.Top() / 4)
tcc.Set(channel, 0) will set the output to low and tcc.Set(channel, tcc.Top()) will set the output to high, assuming the output isn’t inverted.
func (*TCC) SetInverting
func (tcc *TCC) SetInverting(channel uint8, inverting bool)
SetInverting sets whether to invert the output of this channel. Without inverting, a 25% duty cycle would mean the output is high for 25% of the time and low for the rest. Inverting flips the output as if a NOT gate was placed at the output, meaning that the output would be 25% low and 75% high with a duty cycle of 25%.
func (*TCC) SetPeriod
func (tcc *TCC) SetPeriod(period uint64) error
SetPeriod updates the period of this TCC peripheral. To set a particular frequency, use the following formula:
period = 1e9 / frequency
If you use a period of 0, a period that works well for LEDs will be picked.
SetPeriod will not change the prescaler, but also won’t change the current value in any of the channels. This means that you may need to update the value for the particular channel.
Note that you cannot pick any arbitrary period after the TCC peripheral has been configured. If you want to switch between frequencies, pick the lowest frequency (longest period) once when calling Configure and adjust the frequency here as needed.
func (*TCC) Top
func (tcc *TCC) Top() uint32
Top returns the current counter top, for use in duty cycle calculation. It will only change with a call to Configure or SetPeriod, otherwise it is constant.
The value returned here is hardware dependent. In general, it’s best to treat it as an opaque value that can be divided by some number and passed to tcc.Set (see tcc.Set for more information).
type UART
type UART struct {
Buffer *RingBuffer
Bus *sam.SERCOM_USART_INT_Type
SERCOM uint8
Interrupt interrupt.Interrupt // RXC interrupt
}
UART on the SAMD51.
func (*UART) Buffered
func (uart *UART) Buffered() int
Buffered returns the number of bytes currently stored in the RX buffer.
func (*UART) Configure
func (uart *UART) Configure(config UARTConfig) error
Configure the UART.
func (*UART) Read
func (uart *UART) Read(data []byte) (n int, err error)
Read from the RX buffer.
func (*UART) ReadByte
func (uart *UART) ReadByte() (byte, error)
ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.
func (*UART) Receive
func (uart *UART) Receive(data byte)
Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.
func (*UART) SetBaudRate
func (uart *UART) SetBaudRate(br uint32)
SetBaudRate sets the communication speed for the UART.
func (*UART) Write
func (uart *UART) Write(data []byte) (n int, err error)
Write data over the UART’s Tx. This function blocks until the data is finished being sent.
func (*UART) WriteByte
func (uart *UART) WriteByte(c byte) error
WriteByte writes a byte of data over the UART’s Tx. This function blocks until the data is finished being sent.
type UARTConfig
type UARTConfig struct {
BaudRate uint32
TX Pin
RX Pin
RTS Pin
CTS Pin
}
UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.
type UARTParity
type UARTParity uint8
UARTParity is the parity setting to be used for UART communication.
type USBDevice
type USBDevice struct {
initcomplete bool
InitEndpointComplete bool
}
func (*USBDevice) Configure
func (dev *USBDevice) Configure(config UARTConfig)
Configure the USB peripheral. The config is here for compatibility with the UART interface.
type WatchdogConfig
type WatchdogConfig struct {
// The timeout (in milliseconds) before the watchdog fires.
//
// If the requested timeout exceeds `MaxTimeout` it will be rounded
// down.
TimeoutMillis uint32
}
WatchdogConfig holds configuration for the watchdog timer.