m5stamp-c3

Constants

const ( IO0 = GPIO0 IO1 = GPIO1 IO2 = GPIO2 IO3 = GPIO3 IO4 = GPIO4 IO5 = GPIO5 IO6 = GPIO6 IO7 = GPIO7 IO8 = GPIO8 IO9 = GPIO9 IO10 = GPIO10 IO11 = GPIO11 IO12 = GPIO12 IO13 = GPIO13 IO14 = GPIO14 IO15 = GPIO15 IO16 = GPIO16 IO17 = GPIO17 IO18 = GPIO18 IO19 = GPIO19 IO20 = GPIO20 IO21 = GPIO21 XTAL_32K_P = IO0 XTAL_32K_N = IO1 MTMS = IO4 MTDI = IO5 MTCK = IO6 MTDO = IO7 VDD_SPI = IO11 SPIHD = IO12 SPISP = IO13 SPICS0 = IO14 SPICLK = IO15 SPID = IO16 SPIQ = IO17 U0RXD = IO20 U0TXD = IO21 UART_TX_PIN = U0TXD UART_RX_PIN = U0RXD )
const ( WS2812 = IO2 )
const Device = deviceName

Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.

The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.

const ( KHz = 1000 MHz = 1000_000 GHz = 1000_000_000 )

Generic constants.

const NoPin = Pin(0xff)

NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).

const ( PinOutput PinMode = iota PinInput PinInputPullup PinInputPulldown )
const ( GPIO0 Pin = 0 GPIO1 Pin = 1 GPIO2 Pin = 2 GPIO3 Pin = 3 GPIO4 Pin = 4 GPIO5 Pin = 5 GPIO6 Pin = 6 GPIO7 Pin = 7 GPIO8 Pin = 8 GPIO9 Pin = 9 GPIO10 Pin = 10 GPIO11 Pin = 11 GPIO12 Pin = 12 GPIO13 Pin = 13 GPIO14 Pin = 14 GPIO15 Pin = 15 GPIO16 Pin = 16 GPIO17 Pin = 17 GPIO18 Pin = 18 GPIO19 Pin = 19 GPIO20 Pin = 20 GPIO21 Pin = 21 )
const ( PinRising PinChange = iota + 1 PinFalling PinToggle )

Pin change interrupt constants for SetInterrupt.

const ( SPI_MODE0 = uint8(0) SPI_MODE1 = uint8(1) SPI_MODE2 = uint8(2) SPI_MODE3 = uint8(3) FSPICLK_IN_IDX = uint32(63) FSPICLK_OUT_IDX = uint32(63) FSPIQ_IN_IDX = uint32(64) FSPIQ_OUT_IDX = uint32(64) FSPID_IN_IDX = uint32(65) FSPID_OUT_IDX = uint32(65) FSPIHD_IN_IDX = uint32(66) FSPIHD_OUT_IDX = uint32(66) FSPIWP_IN_IDX = uint32(67) FSPIWP_OUT_IDX = uint32(67) FSPICS0_IN_IDX = uint32(68) FSPICS0_OUT_IDX = uint32(68) FSPICS1_OUT_IDX = uint32(69) FSPICS2_OUT_IDX = uint32(70) FSPICS3_OUT_IDX = uint32(71) FSPICS4_OUT_IDX = uint32(72) FSPICS5_OUT_IDX = uint32(73) )
const ( // ParityNone means to not use any parity checking. This is // the most common setting. ParityNone UARTParity = iota // ParityEven means to expect that the total number of 1 bits sent // should be an even number. ParityEven // ParityOdd means to expect that the total number of 1 bits sent // should be an odd number. ParityOdd )

Variables

var ( ErrTimeoutRNG = errors.New("machine: RNG Timeout") ErrClockRNG = errors.New("machine: RNG Clock Error") ErrSeedRNG = errors.New("machine: RNG Seed Error") ErrInvalidInputPin = errors.New("machine: invalid input pin") ErrInvalidOutputPin = errors.New("machine: invalid output pin") ErrInvalidClockPin = errors.New("machine: invalid clock pin") ErrInvalidDataPin = errors.New("machine: invalid data pin") ErrNoPinChangeChannel = errors.New("machine: no channel available for pin interrupt") )
var ( DefaultUART = UART0 UART0 = &_UART0 _UART0 = UART{Bus: esp.UART0, Buffer: NewRingBuffer()} UART1 = &_UART1 _UART1 = UART{Bus: esp.UART1, Buffer: NewRingBuffer()} onceUart = sync.Once{} errSamePins = errors.New("UART: invalid pin combination") errWrongUART = errors.New("UART: unsupported UARTn") errWrongBitSize = errors.New("UART: invalid data size") errWrongStopBitSize = errors.New("UART: invalid bit size") )
var ( _USBCDC = &USB_DEVICE{ Bus: esp.USB_DEVICE, } USBCDC Serialer = _USBCDC )
var ( ErrInvalidSPIBus = errors.New("machine: SPI bus is invalid") ErrInvalidSPIMode = errors.New("machine: SPI mode is invalid") )
var ( // SPI0 and SPI1 are reserved for use by the caching system etc. SPI2 = &SPI{esp.SPI2} )
var ( ErrPWMPeriodTooLong = errors.New("pwm: period too long") )
var Serial = DefaultUART

Serial is implemented via the default (usually the first) UART on the chip.

func CPUFrequency

func CPUFrequency() uint32

CPUFrequency returns the current CPU frequency of the chip. Currently it is a fixed frequency but it may allow changing in the future.

func GetRNG

func GetRNG() (ret uint32, err error)

GetRNG returns 32-bit random numbers using the ESP32-C3 true random number generator, Random numbers are generated based on the thermal noise in the system and the asynchronous clock mismatch. For maximum entropy also make sure that the SAR_ADC is enabled. See esp32-c3_technical_reference_manual_en.pdf p.524

func InitSerial

func InitSerial()

func NewRingBuffer

func NewRingBuffer() *RingBuffer

NewRingBuffer returns a new ring buffer.

type ADC

type ADC struct { Pin Pin }

type ADCConfig

type ADCConfig struct { Reference uint32 // analog reference voltage (AREF) in millivolts Resolution uint32 // number of bits for a single conversion (e.g., 8, 10, 12) Samples uint32 // number of samples for a single conversion (e.g., 4, 8, 16, 32) SampleTime uint32 // sample time, in microseconds (µs) }

ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.

type NullSerial

type NullSerial struct { }

NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.

func (NullSerial) Buffered

func (ns NullSerial) Buffered() int

Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.

func (NullSerial) Configure

func (ns NullSerial) Configure(config UARTConfig) error

Configure does nothing: the null serial has no configuration.

func (NullSerial) ReadByte

func (ns NullSerial) ReadByte() (byte, error)

ReadByte always returns an error because there aren’t any bytes to read.

func (NullSerial) Write

func (ns NullSerial) Write(p []byte) (n int, err error)

Write is a no-op: none of the data is being written and it will not return an error.

func (NullSerial) WriteByte

func (ns NullSerial) WriteByte(b byte) error

WriteByte is a no-op: the null serial doesn’t write bytes.

type PDMConfig

type PDMConfig struct { Stereo bool DIN Pin CLK Pin }

type PWMConfig

type PWMConfig struct { // PWM period in nanosecond. Leaving this zero will pick a reasonable period // value for use with LEDs. // If you want to configure a frequency instead of a period, you can use the // following formula to calculate a period from a frequency: // // period = 1e9 / frequency // Period uint64 }

PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.

type Pin

type Pin uint8

Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.

func (Pin) Configure

func (p Pin) Configure(config PinConfig)

Configure this pin with the given configuration.

func (Pin) Get

func (p Pin) Get() bool

Get returns the current value of a GPIO pin when configured as an input or as an output.

func (Pin) High

func (p Pin) High()

High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.

func (Pin) Low

func (p Pin) Low()

Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.

func (Pin) PortMaskClear

func (p Pin) PortMaskClear() (*uint32, uint32)

Return the register and mask to disable a given GPIO pin. This can be used to implement bit-banged drivers.

Warning: only use this on an output pin!

func (Pin) PortMaskSet

func (p Pin) PortMaskSet() (*uint32, uint32)

Return the register and mask to enable a given GPIO pin. This can be used to implement bit-banged drivers.

Warning: only use this on an output pin!

func (Pin) Set

func (p Pin) Set(value bool)

Set the pin to high or low. Warning: only use this on an output pin!

func (Pin) SetInterrupt

func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) (err error)

SetInterrupt sets an interrupt to be executed when a particular pin changes state. The pin should already be configured as an input, including a pull up or down if no external pull is provided.

You can pass a nil func to unset the pin change interrupt. If you do so, the change parameter is ignored and can be set to any value (such as 0). If the pin is already configured with a callback, you must first unset this pins interrupt before you can set a new callback.

type PinChange

type PinChange uint8

type PinConfig

type PinConfig struct { Mode PinMode }

type PinMode

type PinMode uint8

PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.

type RingBuffer

type RingBuffer struct { rxbuffer [bufferSize]volatile.Register8 head volatile.Register8 tail volatile.Register8 }

RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php

func (*RingBuffer) Clear

func (rb *RingBuffer) Clear()

Clear resets the head and tail pointer to zero.

func (*RingBuffer) Get

func (rb *RingBuffer) Get() (byte, bool)

Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.

func (*RingBuffer) Put

func (rb *RingBuffer) Put(val byte) bool

Put stores a byte in the buffer. If the buffer is already full, the method will return false.

func (*RingBuffer) Used

func (rb *RingBuffer) Used() uint8

Used returns how many bytes in buffer have been used.

type SPI

type SPI struct { Bus *esp.SPI2_Type }

Serial Peripheral Interface on the ESP32-C3.

func (*SPI) Configure

func (spi *SPI) Configure(config SPIConfig) error

Configure and make the SPI peripheral ready to use.

func (*SPI) Transfer

func (spi *SPI) Transfer(w byte) (byte, error)

Transfer writes/reads a single byte using the SPI interface. If you need to transfer larger amounts of data, Tx will be faster.

func (*SPI) Tx

func (spi *SPI) Tx(w, r []byte) error

Tx handles read/write operation for SPI interface. Since SPI is a synchronous write/read interface, there must always be the same number of bytes written as bytes read. This is accomplished by sending zero bits if r is bigger than w or discarding the incoming data if w is bigger than r.

type SPIConfig

type SPIConfig struct { Frequency uint32 SCK Pin // Serial Clock SDO Pin // Serial Data Out (MOSI) SDI Pin // Serial Data In (MISO) CS Pin // Chip Select (optional) LSBFirst bool // MSB is default Mode uint8 // SPI_MODE0 is default }

SPIConfig is used to store config info for SPI.

type Serialer

type Serialer interface { WriteByte(c byte) error Write(data []byte) (n int, err error) Configure(config UARTConfig) error Buffered() int ReadByte() (byte, error) DTR() bool RTS() bool }

type UART

type UART struct { Bus *esp.UART_Type Buffer *RingBuffer ParityErrorDetected bool // set when parity error detected DataErrorDetected bool // set when data corruption detected DataOverflowDetected bool // set when data overflow detected in UART FIFO buffer or RingBuffer }

func (*UART) Buffered

func (uart *UART) Buffered() int

Buffered returns the number of bytes currently stored in the RX buffer.

func (*UART) Configure

func (uart *UART) Configure(config UARTConfig) error

func (*UART) Read

func (uart *UART) Read(data []byte) (n int, err error)

Read from the RX buffer.

func (*UART) ReadByte

func (uart *UART) ReadByte() (byte, error)

ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.

func (*UART) Receive

func (uart *UART) Receive(data byte)

Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.

func (*UART) SetBaudRate

func (uart *UART) SetBaudRate(baudRate uint32)

func (*UART) SetFormat

func (uart *UART) SetFormat(dataBits, stopBits int, parity UARTParity) error

func (*UART) Write

func (uart *UART) Write(data []byte) (n int, err error)

Write data over the UART’s Tx. This function blocks until the data is finished being sent.

func (*UART) WriteByte

func (uart *UART) WriteByte(c byte) error

WriteByte writes a byte of data over the UART’s Tx. This function blocks until the data is finished being sent.

type UARTConfig

type UARTConfig struct { BaudRate uint32 TX Pin RX Pin RTS Pin CTS Pin }

UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.

type UARTParity

type UARTParity uint8

UARTParity is the parity setting to be used for UART communication.

type USB_DEVICE

type USB_DEVICE struct { Bus *esp.USB_DEVICE_Type }

USB Serial/JTAG Controller See esp32-c3_technical_reference_manual_en.pdf pg. 736

func (*USB_DEVICE) Buffered

func (usbdev *USB_DEVICE) Buffered() int

func (*USB_DEVICE) Configure

func (usbdev *USB_DEVICE) Configure(config UARTConfig) error

func (*USB_DEVICE) DTR

func (usbdev *USB_DEVICE) DTR() bool

func (*USB_DEVICE) RTS

func (usbdev *USB_DEVICE) RTS() bool

func (*USB_DEVICE) ReadByte

func (usbdev *USB_DEVICE) ReadByte() (byte, error)

func (*USB_DEVICE) Write

func (usbdev *USB_DEVICE) Write(data []byte) (n int, err error)

func (*USB_DEVICE) WriteByte

func (usbdev *USB_DEVICE) WriteByte(c byte) error