nucleo-f722ze

Constants

const (
	LED		= LED_BUILTIN
	LED_BUILTIN	= LED_GREEN
	LED_GREEN	= PB0
	LED_BLUE	= PB7
	LED_RED		= PB14
)
const (
	BUTTON		= BUTTON_USER
	BUTTON_USER	= PC13
)
const (
	// PD8 and PD9 are connected to the ST-Link Virtual Com Port (VCP)
	UART_TX_PIN	= PD8
	UART_RX_PIN	= PD9
	UART_ALT_FN	= 7	// GPIO_AF7_UART3
)

UART pins

const (
	SPI0_SCK_PIN	= PA5
	SPI0_SDI_PIN	= PA6
	SPI0_SDO_PIN	= PA7
)

SPI pins

const (
	I2C0_SCL_PIN	= PB8
	I2C0_SDA_PIN	= PB9
)

I2C pins

const (
	TWI_FREQ_100KHZ	= 100000
	TWI_FREQ_400KHZ	= 400000
)

TWI_FREQ is the I2C bus speed. Normally either 100 kHz, or 400 kHz for high-speed bus.

Deprecated: use 100 * machine.KHz or 400 * machine.KHz instead.

const (
	// I2CReceive indicates target has received a message from the controller.
	I2CReceive	I2CTargetEvent	= iota

	// I2CRequest indicates the controller is expecting a message from the target.
	I2CRequest

	// I2CFinish indicates the controller has ended the transaction.
	//
	// I2C controllers can chain multiple receive/request messages without
	// relinquishing the bus by doing 'restarts'.  I2CFinish indicates the
	// bus has been relinquished by an I2C 'stop'.
	I2CFinish
)
const (
	// I2CModeController represents an I2C peripheral in controller mode.
	I2CModeController	I2CMode	= iota

	// I2CModeTarget represents an I2C peripheral in target mode.
	I2CModeTarget
)
const Device = deviceName

Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.

The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.

const (
	KHz	= 1000
	MHz	= 1000_000
	GHz	= 1000_000_000
)

Generic constants.

const NoPin = Pin(0xff)

NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).

const (
	PinRising	PinChange	= 1 << iota
	PinFalling
	PinToggle	= PinRising | PinFalling
)
const (
	MAX_NBYTE_SIZE	= 255

	// 100ms delay = 100e6ns / 16ns
	// In runtime_stm32_timers.go, tick is fixed at 16ns per tick
	TIMEOUT_TICKS	= 100e6 / 16

	I2C_NO_STARTSTOP		= 0x0
	I2C_GENERATE_START_WRITE	= 0x80000000 | stm32.I2C_CR2_START
	I2C_GENERATE_START_READ		= 0x80000000 | stm32.I2C_CR2_START | stm32.I2C_CR2_RD_WRN
	I2C_GENERATE_STOP		= 0x80000000 | stm32.I2C_CR2_STOP
)
const (
	// WatchdogMaxTimeout in milliseconds (32.768s)
	//
	// Timeout is based on 12-bit counter with /256 divider on
	// 32.768kHz clock.  See 21.3.3 of RM0090 for table.
	WatchdogMaxTimeout = ((0xfff + 1) * 256 * 1024) / 32768
)
const (
	// Mode Flag
	PinOutput		PinMode	= 0
	PinInput		PinMode	= PinInputFloating
	PinInputFloating	PinMode	= 1
	PinInputPulldown	PinMode	= 2
	PinInputPullup		PinMode	= 3

	// for UART
	PinModeUARTTX	PinMode	= 4
	PinModeUARTRX	PinMode	= 5

	// for I2C
	PinModeI2CSCL	PinMode	= 6
	PinModeI2CSDA	PinMode	= 7

	// for SPI
	PinModeSPICLK	PinMode	= 8
	PinModeSPISDO	PinMode	= 9
	PinModeSPISDI	PinMode	= 10

	// for analog/ADC
	PinInputAnalog	PinMode	= 11

	// for PWM
	PinModePWMOutput	PinMode	= 12
)
const RNG_MAX_READ_RETRIES = 1000
const PWM_MODE1 = 0x6
const (
	AF0_SYSTEM					= 0
	AF1_TIM1_2					= 1
	AF2_TIM3_4_5					= 2
	AF3_TIM8_9_10_11_LPTIM1				= 3
	AF4_I2C1_2_3_USART1				= 4
	AF5_SPI1_2_3_4_5_I2S1_2_3			= 5
	AF6_SPI2_3_I2S2_3_SAI1_UART4			= 6
	AF7_SPI2_3_I2S2_3_USART1_2_3_UART5		= 7
	AF8_SAI2_USART6_UART4_5_7_8_OTG1_FS		= 8
	AF9_CAN1_TIM12_13_14_QUADSPI_FMC_OTG2_HS	= 9
	AF10_SAI2_QUADSPI_SDMMC2_OTG2_HS_OTG1_FS	= 10
	AF11_SDMMC2					= 11
	AF12_UART7_FMC_SDMMC1_OTG2_FS			= 12
	AF15_EVENTOUT					= 15
)

Alternative peripheral pin functions

const (
	PA0	= portA + 0
	PA1	= portA + 1
	PA2	= portA + 2
	PA3	= portA + 3
	PA4	= portA + 4
	PA5	= portA + 5
	PA6	= portA + 6
	PA7	= portA + 7
	PA8	= portA + 8
	PA9	= portA + 9
	PA10	= portA + 10
	PA11	= portA + 11
	PA12	= portA + 12
	PA13	= portA + 13
	PA14	= portA + 14
	PA15	= portA + 15

	PB0	= portB + 0
	PB1	= portB + 1
	PB2	= portB + 2
	PB3	= portB + 3
	PB4	= portB + 4
	PB5	= portB + 5
	PB6	= portB + 6
	PB7	= portB + 7
	PB8	= portB + 8
	PB9	= portB + 9
	PB10	= portB + 10
	PB11	= portB + 11
	PB12	= portB + 12
	PB13	= portB + 13
	PB14	= portB + 14
	PB15	= portB + 15

	PC0	= portC + 0
	PC1	= portC + 1
	PC2	= portC + 2
	PC3	= portC + 3
	PC4	= portC + 4
	PC5	= portC + 5
	PC6	= portC + 6
	PC7	= portC + 7
	PC8	= portC + 8
	PC9	= portC + 9
	PC10	= portC + 10
	PC11	= portC + 11
	PC12	= portC + 12
	PC13	= portC + 13
	PC14	= portC + 14
	PC15	= portC + 15

	PD0	= portD + 0
	PD1	= portD + 1
	PD2	= portD + 2
	PD3	= portD + 3
	PD4	= portD + 4
	PD5	= portD + 5
	PD6	= portD + 6
	PD7	= portD + 7
	PD8	= portD + 8
	PD9	= portD + 9
	PD10	= portD + 10
	PD11	= portD + 11
	PD12	= portD + 12
	PD13	= portD + 13
	PD14	= portD + 14
	PD15	= portD + 15

	PE0	= portE + 0
	PE1	= portE + 1
	PE2	= portE + 2
	PE3	= portE + 3
	PE4	= portE + 4
	PE5	= portE + 5
	PE6	= portE + 6
	PE7	= portE + 7
	PE8	= portE + 8
	PE9	= portE + 9
	PE10	= portE + 10
	PE11	= portE + 11
	PE12	= portE + 12
	PE13	= portE + 13
	PE14	= portE + 14
	PE15	= portE + 15

	PF0	= portF + 0
	PF1	= portF + 1
	PF2	= portF + 2
	PF3	= portF + 3
	PF4	= portF + 4
	PF5	= portF + 5
	PF6	= portF + 6
	PF7	= portF + 7
	PF8	= portF + 8
	PF9	= portF + 9
	PF10	= portF + 10
	PF11	= portF + 11
	PF12	= portF + 12
	PF13	= portF + 13
	PF14	= portF + 14
	PF15	= portF + 15

	PG0	= portG + 0
	PG1	= portG + 1
	PG2	= portG + 2
	PG3	= portG + 3
	PG4	= portG + 4
	PG5	= portG + 5
	PG6	= portG + 6
	PG7	= portG + 7
	PG8	= portG + 8
	PG9	= portG + 9
	PG10	= portG + 10
	PG11	= portG + 11
	PG12	= portG + 12
	PG13	= portG + 13
	PG14	= portG + 14
	PG15	= portG + 15

	PH0	= portH + 0
	PH1	= portH + 1
	PH2	= portH + 2
	PH3	= portH + 3
	PH4	= portH + 4
	PH5	= portH + 5
	PH6	= portH + 6
	PH7	= portH + 7
	PH8	= portH + 8
	PH9	= portH + 9
	PH10	= portH + 10
	PH11	= portH + 11
	PH12	= portH + 12
	PH13	= portH + 13
	PH14	= portH + 14
	PH15	= portH + 15

	PI0	= portI + 0
	PI1	= portI + 1
	PI2	= portI + 2
	PI3	= portI + 3
	PI4	= portI + 4
	PI5	= portI + 5
	PI6	= portI + 6
	PI7	= portI + 7
	PI8	= portI + 8
	PI9	= portI + 9
	PI10	= portI + 10
	PI11	= portI + 11
	PI12	= portI + 12
	PI13	= portI + 13
	PI14	= portI + 14
	PI15	= portI + 15
)
const (
	ARR_MAX	= 0x10000
	PSC_MAX	= 0x10000
)
const APB1_TIM_FREQ = 54e6	// 54MHz

Internal use: configured speed of the APB1 and APB2 timers, this should be kept in sync with any changes to runtime package which configures the oscillators and clock frequencies

const APB2_TIM_FREQ = 216e6	// 216MHz
const (
	// ParityNone means to not use any parity checking. This is
	// the most common setting.
	ParityNone	UARTParity	= iota

	// ParityEven means to expect that the total number of 1 bits sent
	// should be an even number.
	ParityEven

	// ParityOdd means to expect that the total number of 1 bits sent
	// should be an odd number.
	ParityOdd
)

Variables

var (
	// USART3 is the hardware serial port connected to the onboard ST-LINK
	// debugger to be exposed as virtual COM port over USB on Nucleo boards.
	UART1	= &_UART1
	_UART1	= UART{
		Buffer:			NewRingBuffer(),
		Bus:			stm32.USART3,
		TxAltFuncSelector:	UART_ALT_FN,
		RxAltFuncSelector:	UART_ALT_FN,
	}
	DefaultUART	= UART1
)
var (
	// I2C1 is documented, alias to I2C0 as well
	I2C1	= &I2C{
		Bus:			stm32.I2C1,
		AltFuncSelector:	4,
	}
	I2C0	= I2C1
)
var (
	ErrTimeoutRNG		= errors.New("machine: RNG Timeout")
	ErrClockRNG		= errors.New("machine: RNG Clock Error")
	ErrSeedRNG		= errors.New("machine: RNG Seed Error")
	ErrInvalidInputPin	= errors.New("machine: invalid input pin")
	ErrInvalidOutputPin	= errors.New("machine: invalid output pin")
	ErrInvalidClockPin	= errors.New("machine: invalid clock pin")
	ErrInvalidDataPin	= errors.New("machine: invalid data pin")
	ErrNoPinChangeChannel	= errors.New("machine: no channel available for pin interrupt")
)
var (
	Watchdog = &watchdogImpl{}
)
var (
	TIM1	= TIM{
		EnableRegister:	&stm32.RCC.APB2ENR,
		EnableFlag:	stm32.RCC_APB2ENR_TIM1EN,
		Device:		stm32.TIM1,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PA8, AF1_TIM1_2},
				{PE9, AF1_TIM1_2},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA9, AF1_TIM1_2},
				{PE11, AF1_TIM1_2},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA10, AF1_TIM1_2},
				{PE13, AF1_TIM1_2},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA11, AF1_TIM1_2},
				{PE14, AF1_TIM1_2},
			}},
		},
		busFreq:	APB2_TIM_FREQ,
	}

	TIM2	= TIM{
		EnableRegister:	&stm32.RCC.APB1ENR,
		EnableFlag:	stm32.RCC_APB1ENR_TIM2EN,
		Device:		stm32.TIM2,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PA0, AF1_TIM1_2},
				{PA5, AF1_TIM1_2},
				{PA15, AF1_TIM1_2},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA1, AF1_TIM1_2},
				{PB3, AF1_TIM1_2},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA2, AF1_TIM1_2},
				{PB10, AF1_TIM1_2},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA3, AF1_TIM1_2},
				{PB11, AF1_TIM1_2},
			}},
		},
		busFreq:	APB1_TIM_FREQ,
	}

	TIM3	= TIM{
		EnableRegister:	&stm32.RCC.APB1ENR,
		EnableFlag:	stm32.RCC_APB1ENR_TIM3EN,
		Device:		stm32.TIM3,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PA6, AF2_TIM3_4_5},
				{PB4, AF2_TIM3_4_5},
				{PC6, AF2_TIM3_4_5},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA7, AF2_TIM3_4_5},
				{PB5, AF2_TIM3_4_5},
				{PC7, AF2_TIM3_4_5},
			}},
			TimerChannel{Pins: []PinFunction{
				{PB0, AF2_TIM3_4_5},
				{PC8, AF2_TIM3_4_5},
			}},
			TimerChannel{Pins: []PinFunction{
				{PB1, AF2_TIM3_4_5},
				{PC9, AF2_TIM3_4_5},
			}},
		},
		busFreq:	APB1_TIM_FREQ,
	}

	TIM4	= TIM{
		EnableRegister:	&stm32.RCC.APB1ENR,
		EnableFlag:	stm32.RCC_APB1ENR_TIM4EN,
		Device:		stm32.TIM4,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PB6, AF2_TIM3_4_5},
				{PD12, AF2_TIM3_4_5},
			}},
			TimerChannel{Pins: []PinFunction{
				{PB7, AF2_TIM3_4_5},
				{PD13, AF2_TIM3_4_5},
			}},
			TimerChannel{Pins: []PinFunction{
				{PB8, AF2_TIM3_4_5},
				{PD14, AF2_TIM3_4_5},
			}},
			TimerChannel{Pins: []PinFunction{
				{PB9, AF2_TIM3_4_5},
				{PD15, AF2_TIM3_4_5},
			}},
		},
		busFreq:	APB1_TIM_FREQ,
	}

	TIM5	= TIM{
		EnableRegister:	&stm32.RCC.APB1ENR,
		EnableFlag:	stm32.RCC_APB1ENR_TIM5EN,
		Device:		stm32.TIM5,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PA0, AF2_TIM3_4_5},
				{PH10, AF2_TIM3_4_5},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA1, AF2_TIM3_4_5},
				{PH11, AF2_TIM3_4_5},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA2, AF2_TIM3_4_5},
				{PH12, AF2_TIM3_4_5},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA3, AF2_TIM3_4_5},
				{PI0, AF2_TIM3_4_5},
			}},
		},
		busFreq:	APB1_TIM_FREQ,
	}

	TIM6	= TIM{
		EnableRegister:	&stm32.RCC.APB1ENR,
		EnableFlag:	stm32.RCC_APB1ENR_TIM6EN,
		Device:		stm32.TIM6,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
		},
		busFreq:	APB1_TIM_FREQ,
	}

	TIM7	= TIM{
		EnableRegister:	&stm32.RCC.APB1ENR,
		EnableFlag:	stm32.RCC_APB1ENR_TIM7EN,
		Device:		stm32.TIM7,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
		},
		busFreq:	APB1_TIM_FREQ,
	}

	TIM8	= TIM{
		EnableRegister:	&stm32.RCC.APB2ENR,
		EnableFlag:	stm32.RCC_APB2ENR_TIM8EN,
		Device:		stm32.TIM8,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PC6, AF3_TIM8_9_10_11_LPTIM1},
				{PI5, AF3_TIM8_9_10_11_LPTIM1},
			}},
			TimerChannel{Pins: []PinFunction{
				{PC7, AF3_TIM8_9_10_11_LPTIM1},
				{PI6, AF3_TIM8_9_10_11_LPTIM1},
			}},
			TimerChannel{Pins: []PinFunction{
				{PC8, AF3_TIM8_9_10_11_LPTIM1},
				{PI7, AF3_TIM8_9_10_11_LPTIM1},
			}},
			TimerChannel{Pins: []PinFunction{
				{PC9, AF3_TIM8_9_10_11_LPTIM1},
				{PI2, AF3_TIM8_9_10_11_LPTIM1},
			}},
		},
		busFreq:	APB2_TIM_FREQ,
	}

	TIM9	= TIM{
		EnableRegister:	&stm32.RCC.APB2ENR,
		EnableFlag:	stm32.RCC_APB2ENR_TIM9EN,
		Device:		stm32.TIM9,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PA2, AF3_TIM8_9_10_11_LPTIM1},
				{PE5, AF3_TIM8_9_10_11_LPTIM1},
			}},
			TimerChannel{Pins: []PinFunction{
				{PA3, AF3_TIM8_9_10_11_LPTIM1},
				{PE6, AF3_TIM8_9_10_11_LPTIM1},
			}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
		},
		busFreq:	APB2_TIM_FREQ,
	}

	TIM10	= TIM{
		EnableRegister:	&stm32.RCC.APB2ENR,
		EnableFlag:	stm32.RCC_APB2ENR_TIM10EN,
		Device:		stm32.TIM10,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PB8, AF3_TIM8_9_10_11_LPTIM1},
				{PF6, AF3_TIM8_9_10_11_LPTIM1},
			}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
		},
		busFreq:	APB2_TIM_FREQ,
	}

	TIM11	= TIM{
		EnableRegister:	&stm32.RCC.APB2ENR,
		EnableFlag:	stm32.RCC_APB2ENR_TIM11EN,
		Device:		stm32.TIM11,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PB9, AF3_TIM8_9_10_11_LPTIM1},
				{PF7, AF3_TIM8_9_10_11_LPTIM1},
			}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
		},
		busFreq:	APB2_TIM_FREQ,
	}

	TIM12	= TIM{
		EnableRegister:	&stm32.RCC.APB1ENR,
		EnableFlag:	stm32.RCC_APB1ENR_TIM12EN,
		Device:		stm32.TIM12,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PB14, AF9_CAN1_TIM12_13_14_QUADSPI_FMC_OTG2_HS},
				{PH6, AF9_CAN1_TIM12_13_14_QUADSPI_FMC_OTG2_HS},
			}},
			TimerChannel{Pins: []PinFunction{
				{PB15, AF9_CAN1_TIM12_13_14_QUADSPI_FMC_OTG2_HS},
				{PH9, AF9_CAN1_TIM12_13_14_QUADSPI_FMC_OTG2_HS},
			}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
		},
		busFreq:	APB1_TIM_FREQ,
	}

	TIM13	= TIM{
		EnableRegister:	&stm32.RCC.APB1ENR,
		EnableFlag:	stm32.RCC_APB1ENR_TIM13EN,
		Device:		stm32.TIM13,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PA6, AF9_CAN1_TIM12_13_14_QUADSPI_FMC_OTG2_HS},
				{PF8, AF9_CAN1_TIM12_13_14_QUADSPI_FMC_OTG2_HS},
			}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
		},
		busFreq:	APB1_TIM_FREQ,
	}

	TIM14	= TIM{
		EnableRegister:	&stm32.RCC.APB1ENR,
		EnableFlag:	stm32.RCC_APB1ENR_TIM14EN,
		Device:		stm32.TIM14,
		Channels: [4]TimerChannel{
			TimerChannel{Pins: []PinFunction{
				{PA7, AF9_CAN1_TIM12_13_14_QUADSPI_FMC_OTG2_HS},
				{PF9, AF9_CAN1_TIM12_13_14_QUADSPI_FMC_OTG2_HS},
			}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
			TimerChannel{Pins: []PinFunction{}},
		},
		busFreq:	APB1_TIM_FREQ,
	}
)
var (
	ErrPWMPeriodTooLong = errors.New("pwm: period too long")
)
var Serial = DefaultUART

Serial is implemented via the default (usually the first) UART on the chip.

func CPUFrequency

func CPUFrequency() uint32

func CPUReset

func CPUReset()

CPUReset performs a hard system reset.

func DeviceID

func DeviceID() []byte

DeviceID returns an identifier that is unique within a particular chipset.

The identity is one burnt into the MCU itself.

The length of the device ID for STM32 is 12 bytes (96 bits).

func GetRNG

func GetRNG() (uint32, error)

GetRNG returns 32 bits of cryptographically secure random data

func InitSerial

func InitSerial()

func NewRingBuffer

func NewRingBuffer() *RingBuffer

NewRingBuffer returns a new ring buffer.

type ADC

type ADC struct {
	Pin Pin
}

type ADCConfig

type ADCConfig struct {
	Reference	uint32	// analog reference voltage (AREF) in millivolts
	Resolution	uint32	// number of bits for a single conversion (e.g., 8, 10, 12)
	Samples		uint32	// number of samples for a single conversion (e.g., 4, 8, 16, 32)
	SampleTime	uint32	// sample time, in microseconds (µs)
}

ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.

type ChannelCallback

type ChannelCallback func(channel uint8)

type I2C

type I2C struct {
	Bus		*stm32.I2C_Type
	AltFuncSelector	uint8
}

func (*I2C) Configure

func (i2c *I2C) Configure(config I2CConfig) error

func (*I2C) ReadRegister

func (i2c *I2C) ReadRegister(address uint8, register uint8, data []byte) error

ReadRegister transmits the register, restarts the connection as a read operation, and reads the response.

Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily read such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.

func (*I2C) SetBaudRate

func (i2c *I2C) SetBaudRate(br uint32) error

SetBaudRate sets the communication speed for I2C.

func (*I2C) Tx

func (i2c *I2C) Tx(addr uint16, w, r []byte) error

func (*I2C) WriteRegister

func (i2c *I2C) WriteRegister(address uint8, register uint8, data []byte) error

WriteRegister transmits first the register and then the data to the peripheral device.

Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily write to such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.

type I2CConfig

type I2CConfig struct {
	Frequency	uint32
	SCL		Pin
	SDA		Pin
}

I2CConfig is used to store config info for I2C.

type I2CMode

type I2CMode int

I2CMode determines if an I2C peripheral is in Controller or Target mode.

type I2CTargetEvent

type I2CTargetEvent uint8

I2CTargetEvent reflects events on the I2C bus

type NullSerial

type NullSerial struct {
}

NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.

func (NullSerial) Buffered

func (ns NullSerial) Buffered() int

Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.

func (NullSerial) Configure

func (ns NullSerial) Configure(config UARTConfig) error

Configure does nothing: the null serial has no configuration.

func (NullSerial) ReadByte

func (ns NullSerial) ReadByte() (byte, error)

ReadByte always returns an error because there aren’t any bytes to read.

func (NullSerial) Write

func (ns NullSerial) Write(p []byte) (n int, err error)

Write is a no-op: none of the data is being written and it will not return an error.

func (NullSerial) WriteByte

func (ns NullSerial) WriteByte(b byte) error

WriteByte is a no-op: the null serial doesn’t write bytes.

type PDMConfig

type PDMConfig struct {
	Stereo	bool
	DIN	Pin
	CLK	Pin
}

type PWMConfig

type PWMConfig struct {
	// PWM period in nanosecond. Leaving this zero will pick a reasonable period
	// value for use with LEDs.
	// If you want to configure a frequency instead of a period, you can use the
	// following formula to calculate a period from a frequency:
	//
	//     period = 1e9 / frequency
	//
	Period uint64
}

PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.

type Pin

type Pin uint8

Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.

func (Pin) Configure

func (p Pin) Configure(config PinConfig)

Configure this pin with the given configuration

func (Pin) ConfigureAltFunc

func (p Pin) ConfigureAltFunc(config PinConfig, altFunc uint8)

Configure this pin with the given configuration including alternate

function mapping if necessary.

func (Pin) Get

func (p Pin) Get() bool

Get returns the current value of a GPIO pin when the pin is configured as an input or as an output.

func (Pin) High

func (p Pin) High()

High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.

func (Pin) Low

func (p Pin) Low()

Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.

func (Pin) PortMaskClear

func (p Pin) PortMaskClear() (*uint32, uint32)

PortMaskClear returns the register and mask to disable a given port. This can be used to implement bit-banged drivers.

func (Pin) PortMaskSet

func (p Pin) PortMaskSet() (*uint32, uint32)

PortMaskSet returns the register and mask to enable a given GPIO pin. This can be used to implement bit-banged drivers.

func (Pin) Set

func (p Pin) Set(high bool)

Set the pin to high or low. Warning: only use this on an output pin!

func (Pin) SetAltFunc

func (p Pin) SetAltFunc(af uint8)

SetAltFunc maps the given alternative function to the I/O pin

func (Pin) SetInterrupt

func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error

SetInterrupt sets an interrupt to be executed when a particular pin changes state. The pin should already be configured as an input, including a pull up or down if no external pull is provided.

This call will replace a previously set callback on this pin. You can pass a nil func to unset the pin change interrupt. If you do so, the change parameter is ignored and can be set to any value (such as 0).

type PinChange

type PinChange uint8

———- General pin operations ———-

type PinConfig

type PinConfig struct {
	Mode PinMode
}

type PinFunction

type PinFunction struct {
	Pin	Pin
	AltFunc	uint8
}

type PinMode

type PinMode uint8

PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.

type RingBuffer

type RingBuffer struct {
	rxbuffer	[bufferSize]volatile.Register8
	head		volatile.Register8
	tail		volatile.Register8
}

RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php

func (*RingBuffer) Clear

func (rb *RingBuffer) Clear()

Clear resets the head and tail pointer to zero.

func (*RingBuffer) Get

func (rb *RingBuffer) Get() (byte, bool)

Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.

func (*RingBuffer) Put

func (rb *RingBuffer) Put(val byte) bool

Put stores a byte in the buffer. If the buffer is already full, the method will return false.

func (*RingBuffer) Used

func (rb *RingBuffer) Used() uint8

Used returns how many bytes in buffer have been used.

type TIM

type TIM struct {
	EnableRegister	*volatile.Register32
	EnableFlag	uint32
	Device		*stm32.TIM_Type
	Channels	[4]TimerChannel
	UpInterrupt	interrupt.Interrupt
	OCInterrupt	interrupt.Interrupt

	wraparoundCallback	TimerCallback
	channelCallbacks	[4]ChannelCallback

	busFreq	uint64
}

func (*TIM) Channel

func (t *TIM) Channel(pin Pin) (uint8, error)

Channel returns a PWM channel for the given pin.

func (*TIM) Configure

func (t *TIM) Configure(config PWMConfig) error

Configure enables and configures this PWM.

func (*TIM) Count

func (t *TIM) Count() uint32

func (*TIM) Set

func (t *TIM) Set(channel uint8, value uint32)

Set updates the channel value. This is used to control the channel duty cycle. For example, to set it to a 25% duty cycle, use:

t.Set(ch, t.Top() / 4)

ch.Set(0) will set the output to low and ch.Set(ch.Top()) will set the output to high, assuming the output isn’t inverted.

func (*TIM) SetInverting

func (t *TIM) SetInverting(channel uint8, inverting bool)

SetInverting sets whether to invert the output of this channel. Without inverting, a 25% duty cycle would mean the output is high for 25% of the time and low for the rest. Inverting flips the output as if a NOT gate was placed at the output, meaning that the output would be 25% low and 75% high with a duty cycle of 25%.

func (*TIM) SetMatchInterrupt

func (t *TIM) SetMatchInterrupt(channel uint8, callback ChannelCallback) error

Sets a callback to be called when a channel reaches it’s set-point.

For example, if t.Set(ch, t.Top() / 4) is used then the callback will be called every quarter-period of the timer’s base Period.

func (*TIM) SetPeriod

func (t *TIM) SetPeriod(period uint64) error

SetPeriod updates the period of this PWM peripheral. To set a particular frequency, use the following formula:

period = 1e9 / frequency

If you use a period of 0, a period that works well for LEDs will be picked.

SetPeriod will not change the prescaler, but also won’t change the current value in any of the channels. This means that you may need to update the value for the particular channel.

Note that you cannot pick any arbitrary period after the PWM peripheral has been configured. If you want to switch between frequencies, pick the lowest frequency (longest period) once when calling Configure and adjust the frequency here as needed.

func (*TIM) SetWraparoundInterrupt

func (t *TIM) SetWraparoundInterrupt(callback TimerCallback) error

SetWraparoundInterrupt configures a callback to be called each time the timer ‘wraps-around’.

For example, if Configure(PWMConfig{Period:1000000}) is used, to set the timer period to 1ms, this callback will be called every 1ms.

func (*TIM) Top

func (t *TIM) Top() uint32

Top returns the current counter top, for use in duty cycle calculation. It will only change with a call to Configure or SetPeriod, otherwise it is constant.

The value returned here is hardware dependent. In general, it’s best to treat it as an opaque value that can be divided by some number and passed to pwm.Set (see pwm.Set for more information).

func (*TIM) Unset

func (t *TIM) Unset(channel uint8)

Unset disables a channel, including any configured interrupts.

type TimerCallback

type TimerCallback func()

type TimerChannel

type TimerChannel struct {
	Pins []PinFunction
}

type UART

type UART struct {
	Buffer			*RingBuffer
	Bus			*stm32.USART_Type
	Interrupt		interrupt.Interrupt
	TxAltFuncSelector	uint8
	RxAltFuncSelector	uint8

	// Registers specific to the chip
	rxReg		*volatile.Register32
	txReg		*volatile.Register32
	statusReg	*volatile.Register32
	txEmptyFlag	uint32
}

UART representation

func (*UART) Buffered

func (uart *UART) Buffered() int

Buffered returns the number of bytes currently stored in the RX buffer.

func (*UART) Configure

func (uart *UART) Configure(config UARTConfig)

Configure the UART.

func (*UART) Read

func (uart *UART) Read(data []byte) (n int, err error)

Read from the RX buffer.

func (*UART) ReadByte

func (uart *UART) ReadByte() (byte, error)

ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.

func (*UART) Receive

func (uart *UART) Receive(data byte)

Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.

func (*UART) SetBaudRate

func (uart *UART) SetBaudRate(br uint32)

SetBaudRate sets the communication speed for the UART. Defer to chip-specific routines for calculation

func (*UART) Write

func (uart *UART) Write(data []byte) (n int, err error)

Write data over the UART’s Tx. This function blocks until the data is finished being sent.

func (*UART) WriteByte

func (uart *UART) WriteByte(c byte) error

WriteByte writes a byte of data over the UART’s Tx. This function blocks until the data is finished being sent.

type UARTConfig

type UARTConfig struct {
	BaudRate	uint32
	TX		Pin
	RX		Pin
	RTS		Pin
	CTS		Pin
}

UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.

type UARTParity

type UARTParity uint8

UARTParity is the parity setting to be used for UART communication.

type WatchdogConfig

type WatchdogConfig struct {
	// The timeout (in milliseconds) before the watchdog fires.
	//
	// If the requested timeout exceeds `MaxTimeout` it will be rounded
	// down.
	TimeoutMillis uint32
}

WatchdogConfig holds configuration for the watchdog timer.